Skip to main content

Publications

Publications

Supporting the scientific spirit of transparency, the Stowers Institute for Medical Research makes the data underlying its scientific publications freely accessible to the scientific community. Access to original, unprocessed data allows other scientists to validate and extend findings made by Stowers researchers.

Filters:

Display results from:

The Swi-Snf chromatin remodeling complex mediates gene repression through metabolic control

Church MC, Price A, Li H, Workman JL. Nucleic Acids Res. 2023;51:10278-10291.

Paraspeckles interact with SWI/SNF subunit ARID1B to regulate transcription and splicing

Reddy D, Bhattacharya S, Levy M, Zhang Y, Gogol M, Li H, Florens L, Workman JL. EMBO Rep 2023;24:e55345 doi: 10.15252/embr.202255345.

Elevated levels of the methyltransferase SETD2 causes transcription and alternative splicing changes resulting in oncogenic phenotypes

Bhattacharya S, Reddy D, Zhang N, Li H, Workman J.  Front Cell Dev Biol. 2022;10:945668 doi: 10.3389/fcell.2022.945668.

MPTAC links alkylation damage signaling to sterol biosynthesis

Suganuma T, Workman JL. Redox Biol. 2022;51:102270. doi: 102210.101016/j.redox.102022.102270.

MOCS2 links nucleotide metabolism to nucleoli function

Suganuma T, Swanson SK, Gogol M, Garrett TJ, Florens L, Workman JL. J Mol Cell Biol. 2022;13:838-840.

The linker histone Hho1 modulates the activity of ATP-dependent chromatin remodeling complexes.

Amigo R, Farkas C, Gidi C, Hepp MI, Cartes N, Tarifeno E, Workman JL, Gutierrez JL. [published ahead of print December 25 2021]. Biochim Biophys Acta Gene Regul Mech. 2022;1865:194781.

The SAGA core module is critical during Drosophila oogenesis and is broadly recruited to promoters

Soffers JHM, Alcantara SG, Li X, Shao W, Seidel CW, Li H, Zeitlinger J, Abmayr SM, Workman JL. PLoS Genet. 2021;17:e1009668. doi: 10.1371/journal.pgen.1009668.

Structural basis of the interaction between SETD2 methyltransferase and hnRNP L paralogs for governing co-transcriptional splicing

Bhattacharya S, Wang S, Reddy D, Shen S, Zhang Y, Zhang N, Li H, Washburn MP, Florens L, Shi Y, Workman JL, Li F. Nat Commun. 2021;12:6452. doi: 6410.1038/s41467-41021-26799-41463.

The disordered regions of the methyltransferase SETD2 govern its function by regulating its proteolysis and phase separation

Bhattacharya S, Lange JJ, Levy M, Florens L, Washburn MP, Workman JL. J Biol Chem. 2021:101075.

The SESAME complex regulates cell senescence through the generation of acetyl-CoA

Chen W, Yu X, Wu Y, Tang J, Yu Q, Lv X, Zha Z, Hu B, Li X, Chen J, Ma L, Workman JL, Li S. Nat Metab. 2021;3:983-1000. doi: 10.1038/s42255-021-00412-9.

The methyltransferase SETD2 couples transcription and splicing by engaging mRNA processing factors through its SHI domain

Bhattacharya S, Levy MJ, Zhang N, Li H, Florens L, Washburn MP, Workman JL. Nat Commun. 2021;12:1443. doi: 1410.1038/s41467-41021-21663-w.

Metabolic regulation of telomere silencing by SESAME complex-catalyzed H3T11 phosphorylation

Zhang S, Yu X, Zhang Y, Xue X, Yu Q, Zha Z, Gogol M, Workman JL, Li S. Nat Commun. 2021;12:594. doi: 510.1038/s41467-41020-20711-41461.

Yeast Nuak1 phosphorylates histone H3 threonine 11 in low glucose stress by the cooperation of AMPK and CK2 signaling

Oh S, Lee J, Swanson SK, Florens L, Washburn MP, Workman JL.  eLife. 2020;9:e64588. doi: 64510.67554/eLife.64588.

The plasticity of the pyruvate dehydrogenase complex confers a labile structure that is associated with its catalytic activity

Lee J, Oh S, Bhattacharya S, Zhang Y, Florens L, Washburn MP, Workman JL. PLos One. 2020;15:e0243489. doi: 10.1371/journal.pone.0243489.

Driving Integrative Structural Modeling with Serial Capture Affinity Purification

Liu X, Zhang Y, Wen Z, Hao Y, Banks CAS, Lange JJ, Slaughter BD, Unruh JR, Florens L, Abmayr SM, Workman JL, Washburn MP. Proc Natl Acad Sci U S A. 2020;117:31861-31870.

Regulation of SETD2 stability is important for the fidelity of H3K36me3 deposition

Bhattacharya S, Workman J. L. Epigentics Chromatin. 2020;13:40.

b-Catenin and Associated Proteins Regulate Lineage Differentiation in Ground State Mouse Embryonic Stem Cells

Tao F, Soffers J, Hu D, Chen S, Gao X, Zhang Y, Zhao C, Smith SE, Unruh JR, Zhang D, Tsuchiya D, Venkatraman A, Zhao M, Li Z, Qian P, Parmely T, He XC, Washburn M, Florens L, Perry JM, Zeitlinger J, Workman J, Li L. Stem Cell Rep. 2020;15:662-676.

Glycolysis regulates gene expression by promoting the crosstalk between H3K4 trimethylation and H3K14 acetylation in Saccharomyces cerevisiae

Wu Y, Zhang S, Gong X, Yu Q, Zhang Y, Luo M, Zhang X, Workman JL, Yu X, Li S. J Genet Genomics = Yi chuan xue bao. 2019;46:561-574.

Identification of a nuclear localization signal and importin beta members mediating NUAK1 nuclear import inhibited by oxidative stress

Palma M, Riffo EN, Suganuma T, Washburn MP, Workman JL, Pincheira R, Castro AF. J Cell Biochem. 2019;120:16088-16107.

Set1-catalyzed H3K4 trimethylation antagonizes the HIR/Asf1/Rtt106 repressor complex to promote histone gene expression and chronological life span

Mei Q, Xu C, Gogol M, Tang J, Chen W, Yu X, Workman JL, Li S. Nucleic Acids Res. 2019;47:3434-3449.
Previous

Page 1 of 6

Rpd3S meets the nucleosome

Carrozza MJ, Workman JL. Cell Res. 2024;34:1-2.

Chromatin balances cell redox and energy homeostasis

Sugamuna T, Workman J. Epigenet Chromatin. 2023;16:46. https://doi.org/10.1186/s13072-13023-00520-13078.

(mis)‑Targeting of SWI/SNF complex(es) in cancer

Reddy D, Bhattacharya S, Workman JL. Cancer Metastasis Rev. 2023.

Beyond Moco Biosynthesis-Moonlighting Roles of MoaE and MOCS2

Suganuma T. Molecules. 2022;27:3733. doi: 3710.3390/molecules27123733.

Macrophages, Metabolites, and Nucleosomes: Chromatin at the intersection between aging and inflammation

Church MC, Workman JL, Suganuma T.  Int J Mol Sci. 2021;22:10274. doi: 10210.13390/ijms221910274.

Nucleotide Metabolism Behind Epigenetics

Suganuma T, Workman JL. Front Endocrinol (Lausanne). 2021;12:731648.

SAGA Structures Provide Mechanistic Models for Gene Activation

Soffers JHM, Popova VV, Workman JLW. Trends Biochem Sci. 2020;45:547-549.

When histones are under glucose starvation

Lee J, Oh S, Abmayr SM, Workman JL. J Biosci. 2020;45:e17.

Exogenous pyruvate represses histone gene expression and inhibits cancer cell proliferation via the NAMPT-NAD+-SIRT1 pathway

Ma R, Wu Y, Zhai Y, Hu B, Ma W, Yang W, Yu Q, Chen Z, Workman JL, Yu X, Li S. Nucleic Acids Res. 2019;47:11132-11150.

Rebooting the Epigenome: Erasure of Parental Histone Marks for Establishing the Regulatory Landscape in Zygotes

Bhattacharya S, Workman JL. [published ahead of print October 23 2019]. Biochemistry. 2019.

NSL complex acetylates Lamin A/C

Popova VV, Workman JL. Nat Cell Biol. 2019;21:1177-1178.

Histone lysine de-beta-hydroxybutyrylation by SIRT3

Abmayr SM, Workman JL. Cell Res. 2019;29:694-695.

Targeting BAF-perturbed cancers

Reddy D, Workman JL. Nat Cell Biol. 2018;20:1332-1333.

Chromatin and Metabolism

Suganuma T, Workman JL. Annu Rev Biochem.2018;87:27-49.

Unravelling the biology of chromatin in health and cancer using proteomic approaches

Eubanks CG, Dayebgadoh G, Liu X, Washburn MP. Expert Rev Proteomics.2017;14:905-915.

In Vitro Assembly of Nucleosomes for Binding/Remodeling Assays

Dutta A, Workman JL. Methods Mol Biol.2017;1528:1-17.

Reading and Interpreting the Histone Acylation Code

Soffers JH, Li X, Abmayr SM, Workman JL. Bioinformatics. 2016;14:329-332.​

Diverse Activities of Histone Acylations Connect Metabolism to Chromatin Function

Dutta A, Abmayr SM, Workman JL. Mol Cell.2016;63:547-552.

Stem Cells and Regeneration in the Digestive System: Keystone Meeting

Soffers JH, Hansen D, Sinagoga KL, Li B, Martin MG, Wells J, Grompe M, Li L. Gastroenterology.2016;151:e6-9.
Previous

Page 1 of 5

Newsletter & Alerts